TECHNICAL DATA SHEET

Transparent

2100 g/mol

0.17 %

HANSA SFA 13202 Hydride modified siloxanes

Product

Hydride content %

Molecular weight g/mol

Color

Description **Test Method Property** Value

The crosslinkers of the HANSA SFA 11 series are polydimethylsiloxanes with Si-H groups on the chain, while the HANSA SFA 13 series additionally have terminal Si-H groups.

Both materials are typically used in platinum catalyzed crosslinking reactions with vinyl siloxanes in addition curing elastomers. They can also be used in the synthesis of organo-

Non-Volatile Content > 99 (%) modified silicone products for a large group of applications. Shelf Life 12 mths Ultralow cyclic content Yes **Key Features**

Crosslinker **Uncured Product** end- and side-modification

Good UV stability Cure Type **Additon cure**

No shrinkage during crosslinking **Cured Product Key Applications**

BS ISO 2781 0.97 g/cm3 Density · Intermediate for addition curing formulations

Use and Cure Information Solubility

The preferred catalyst for the Hydrosilylation reaction is platinum Solubility - Water insoluble catalyst from the ALPA-KAT series. It is advised to determine the

ratio of hydride functional siloxane and the desired reaction component beforehand. Especially when using filled system, a hydride excess is

When handling Si-H containing materials make sure to use equipment with dedicated charging and vents systems to prevent contamination with other materials that promote side reactions and the generation of hydrogen gas. For more information see the MSDS.

Reactions of Si-H materials are usually exothermic and depending on the concentration of the Si-H material in the system. When producing organo-modified silicone products it is important to monitor the temperature early in the reaction step to avoid a potentially dangerous

When formulating addition curing elastomers make sure that the platinum catalyst is not in the same component as the Si-H fluid. All materials of the HANSA SFA 1 series are stable at ambient temperature under the exclusion of water.

Health & Safety

Si-H modified silicone compounds are reactive under certain conditions and care is required when handling these materials. They may evolve hydrogen on contact or when mixed with strong acids or bases; amines; primary or secondary alcohols and water in the presence of acids, bases, or catalytic metals; some catalytic and reactive metals; or metal salt forming compounds. When contacting these materials, Si-H compounds can rapidly evolve hydrogen gas and form flammable and explosive mixtures in air. Si-H products used in platinum-catalyzed addition-curing systems, such as Si-H elastomers, can also release flammable and explosive hydrogen gas if these products are combined with each other or with incompatible materials.

Revision Date 20 Oct 2021

Revision No

Download Date 20 Apr 2024